<!--go-->
所谓“P=NP?”问题,“?”才是关键。
因为不知道等不等于,需要证明的就是等不等于。
简单点的说,计算机解不同的题目,就是将之拆分成加加减减这样最基础的运算。
所以一道题究竟有多难……嗯,主要是对计算机多难,就取决于可以拆分成多少步,或者说花多少时间——计算机基础运算的时间基本一样,所以忽略空间方面的因素,二者大致等价。
这叫时间复杂度,用大O也叫渐进符号表示。
O(1)就是常数级复杂度——最常规的计算,数据规模增加多少,运算花费时间也随之增加多少。
O(logn)就要复杂一点了。
然后还有O(n),O(nlogn),O(n^),O(n!),O(n^n)……
一级一级,难度逐层上升,解题所用时间花式暴涨。
其中O(n^c)之下,是多项式时间内能解决的,就叫做P类问题。
在此之上的,虽然会随着n的增长,出现指数级甚至更过分的暴涨,却有一个共同点,就是正向解很难,给你一个答案去验证,一般就不难了。
比如大数的质因数分解。
想知道一个大数是不是素数很难,需要从2开始,一直除到根下n。
但告诉你它能被某个数整除,你去验证,则就几步的事。
这类可以在多项式时间里验证的问题,就叫做NP问题。
显然所有P类问题,都是NP问题,因为是简单可验证的。
但NP类问题,是否都是P类问题?是否存在某些特殊的算法,能将这些问题的难度降低到多项式时间可以解决,就仿佛给答案去验证的程度上去呢?
这就是“P=NP?”了。
Loading...
未加载完,尝试【刷新】or【关闭小说模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.ebookchina.com
(>人<;)